54 research outputs found

    The stability of a rising droplet: an inertialess nonmodal growth mechanism

    Get PDF
    Prior modal stability analysis (Kojima et al., Phys. Fluids, vol. 27, 1984) predicted that a rising or sedimenting droplet in a viscous fluid is stable in the presence of surface tension no matter how small, in contrast to experimental and numerical results. By performing a non-modal stability analysis, we demonstrate the potential for transient growth of the interfacial energy of a rising droplet in the limit of inertialess Stokes equations. The predicted critical capillary numbers for transient growth agree well with those for unstable shape evolution of droplets found in the direct numerical simulations of Koh & Leal (Phys. Fluids, vol. 1, 1989). Boundary integral simulations are used to delineate the critical amplitude of the most destabilizing perturbations. The critical amplitude is negatively correlated with the linear optimal energy growth, implying that the transient growth is responsible for reducing the necessary perturbation amplitude required to escape the basin of attraction of the spherical solution.Comment: 11pages, 7 figure

    A unified criterion for the centrifugal instabilities of vortices and swirling jets

    Get PDF
    International audienceSwirling jets and vortices can both be unstable to the centrifugal instability but with a different wavenumber selection: the most unstable perturbations for swirling jets in inviscid fluids have an infinite azimuthal wavenumber, whereas, for vortices, they are axisymmetric but with an infinite axial wavenumber. Accordingly, sufficient condition for instability in inviscid fluids have been derived asymptotically in the limits of large azimuthal wavenumber m for swirling jets (Leibovich and Stewartson, J. Fluid Mech. vol. 126, 1983, pp. 335-356) and large dimensionless axial wavenumber k for vortices (Billant and Gallaire, J. Fluid Mech., vol. 542, 2005, pp. 365-379). In this paper, we derive a unified criterion valid whatever the magnitude of the axial flow by performing an asymptotic analysis for large total wavenumber root k(2) + m(2). The new criterion recovers the criterion of Billant and Gallaire when the axial flow is small and the Leibovich and Stewartson criterion when the axial flow is finite and its profile sufficiently different from the angular velocity profile. When the latter condition is not satisfied, it is shown that the accuracy of the Leibovich and Stewartson asymptotics is strongly reduced. The unified criterion is validated by comparisons with numerical stability analyses of various classes of swirling jet profiles. In the case of the Batchelor vortex, it provides accurate predictions over a wider range of axial wavenumbers than the Leibovich-Stewartson criterion. The criterion shows also that a whole range of azimuthal wavenumbers are destabilized as soon as a small axial velocity component is present in a centrifugally unstable vortex

    Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities

    No full text
    The well-known Rayleigh criterion is a necessary and sufficient condition for inviscid centrifugal instability of axisymmetric perturbations. We have generalized this criterion to disturbances of any azimuthal wavenumber m by means of large-axial-wavenumber WKB asymptotics. A sufficient condition for a free axisymmetric vortex with angular velocity Ω(r) to be unstable to a three-dimensional perturbation of azimuthal wavenumber m is that the real part of the growth rate...is positive at the complex radius r=r0 where ∂σ(r)/∂r=0, i.e. where ϕ=(1/r3)∂r4Ω2/∂r is the Rayleigh discriminant, provided that some a posteriori checks are satisfied. The application of this new criterion to various classes of vortex profiles shows that the growth rate of non-axisymmetric disturbances decreases as m increases until a cutoff is reached. The criterion is in excellent agreement with numerical stability analyses of the Carton & McWilliams (1989) vortices and allows one to analyse the competition between the centrifugal instability and the shear instability. The generalized criterion is also valid for a vertical vortex in a stably stratified and rotating fluid, except that φ becomes \phi{=}(1/r^3)\partial{r^4(\Omega+\Omega_b)^2/\partial r, where Ωb is the background rotation about the vertical axis. The stratification is found to have no effect. For the Taylor-Couette flow between two coaxial cylinders, the same criterion applies except that r0 is real and equal to the inner cylinder radius. In sharp contrast, the maximum growth rate of non-axisymmetric disturbances is then independent of m

    Control of a separated boundary layer: Reduced-order modeling using global modes revisited

    Get PDF
    International audienceThe possibility of model reduction using global modes is readdressed, aiming at the controlling of a globally unstable separation bubble induced by a bump geometry. A combined oblique and orthogonal projection approach is proposed to design an estimator and controller in a Riccati-type feedback setting. An input-output criterion is used to appropriately select the modes of the projection basis. The full-state linear instability dynamics is shown to be successfully controlled by the feedback coupling with controllers of moderate degrees of freedom

    Bifurcation Dynamics of a Particle-Encapsulating Droplet in Shear Flow

    Get PDF
    To understand the behavior of composite fluid particles such as nucleated cells and double emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimension-two point. We adopt a dynamic system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations

    On the liquid film instability of an internally coated horizontal tube

    Full text link
    We study numerically and theoretically the gravity-driven flow of a viscous liquid film coating the inner side of a horizontal cylindrical tube and surrounding a shear-free dynamically inert gaseous core. The liquid-gas interface is prone to the Rayleigh-Plateau and Rayleigh-Taylor instabilities. Here, we focus on the limit of low and intermediate Bond numbers, Bo, where the capillary and gravitational forces are comparable and the Rayleigh-Taylor instability is known to be suppressed. We first study the evolution of the axially invariant draining flow, initiating from a uniform film thickness until reaching a quasi-static regime as the bubble approaches the upper tube wall. We then investigate the flow linear stability within two frameworks: frozen time-frame (quasi-steady) stability analysis and transient growth analysis. We explore the effect of the surface tension (Bo) and inertia (measured by the Ohnesorge number, Oh) on the flow and its stability. The linear stability analysis suggests that the interface deformation at large Bo results in the suppression of the Rayleigh-Plateau instability in the asymptotic long-time limit. Furthermore, the transient growth analysis suggests that the initial flow evolution does not lead to any considerable additional amplification of initial interface perturbations, a posteriori rationalising the quasi-steady assumption. The present study yields a satisfactory prediction of the stabilisation threshold found experimentally by Duclaux et al. [15]

    Saturation of the response to stochastic forcing in two-dimensional backward-facing step flow: A self-consistent approximation

    Get PDF
    Selective noise amplifiers are characterized by large linear amplification to external perturbations in a particular frequency range despite their global linear stability. Applying a stochastic forcing with increasing amplitude, the response undergoes a strong nonlinear saturation when compared to the linear estimation. Building upon our previous work, we introduce a predictive model that describes this nonlinear dynamics, and we apply it to a canonical example of selective noise amplifiers: the backward-facing step flow. Rewriting conveniently the stochastic forcing and response in the frequency domain, the model consists in a mean flow equation coupled to the linear response to forcing at each frequency. This coupling is attained by the Reynolds stress, which is constructed by the integral in frequency of the independent responses. We generalize the model for a response to a white noise forcing d-correlated in space and time restricting the flow dynamics to its most energetic patterns calculated from the optimal harmonic forcing and response of the flow. The model estimates accurately the response saturation when compared to direct numerical simulations, and it correctly approximates the structure of the response and the mean flow modification. It also shows that the response undergoes a selective process governed by the nonlinear gain, which promotes a response structure with an approximately single frequency and wavelength in the whole domain. These results suggest that the mean flow modification by the Reynolds stress is the key nonlinearity in the saturation process of the response to white noise

    Mode selection in trailing vortices: harmonic response of the non-parallel Batchelor vortex

    Get PDF
    In the present study, the response of model trailing vortices subjected to a harmonic forcing is studied. To this purpose, a globally stable non-parallel Batchelor vortex is considered as the baseflow. Direct numerical simulations (DNS) show that a large variety of helical responses can be excited and amplified through the domain when a harmonic inlet forcing is imposed. The spatial shape of the responses strongly depends on the forcing frequency, with the appearance of modes with progressively higher azimuthal wavenumber m as the frequency increases. The mode-selection mechanism is shown to be directly connected to the local stability properties of the flow, and is simultaneously investigated by a WKB (Wentzel, Kramers, Brillouin) approximation in the framework of weakly non-parallel flows and by the global resolvent approach. In addition to the excellent agreement between the two (local and global) approaches for the computation of the linear response to harmonic forcing at the inlet, the usual WKB analysis is extended to a suitably chosen type of harmonic body forcing, showing also good agreement with the corresponding global results. As expected, the gain of the nonlinear response is significantly lower than that of the linear response, but the mode selection observed in the DNS as a function of the forcing frequency can be predicted fairly accurately by the linear analysis. Finally, by comparing the linear and nonlinear results in terms of energy content for different m, we suggest that the origin of the meandering observed in trailing-vortex experiments could be due to a nonlinear excitation stemming consistently at m = 1 from the competition between the leading linear modes

    Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis

    Get PDF
    We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014)]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent

    Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing

    Get PDF
    The on-demand generation of viscous microdroplets to print functional or biological materials remains challenging using conventional inkjet-printing methods, mainly due to aggregation and clogging issues. In an effort to overcome these limitations, we implement a jetting method to print viscous microdroplets by laser-induced shockwaves. We experimentally investigate the dependence of the jetting regimes and the droplet size on the laser-pulse energy and on the inks' physical properties. The range of printable liquids with our device is significantly extended compared to conventional inkjet printers's performances. In addition, the laser-induced flow-focusing phenomenon allows us to controllably generate viscous microdroplets up to 210 mPa s with a diameter smaller than the nozzle from which they originated (200 mu m). Inks containing proteins are printed without altering their functional properties, thus demonstrating that this jetting technique is potentially suitable for bioprinting
    • 

    corecore